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SUMMARY

A complete framework for solving the incompressible Navier–Stokes equations in parallel is presented.
An unstructured mesh is decomposed into non-overlapping subdomains corresponding to the number
of processors. Each subdomain is adaptively re�ned independently based on local Reynolds number
estimates. Computational load is balanced by transferring element-octrees between subdomains.
A parallel conjugate gradient solver with ILU preconditioning is achieved by resolving node depen-

dencies based on mesh structure. Each node is sorted by category giving an a priori pivoting suited for
parallel solution. The parallel solver has convergence rates comparable to serial solvers with a similar
ILU strategy. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Simulations on single processors are often limited by CPU speed and available central mem-
ory. Even fairly modest three-dimensional problems can surpass what can be solved on a
single processor in a reasonable amount of time. Parallel multiprocessing is a frequently used
strategy for overcoming such limits [1–3]. In this work a parallel �nite element solver for a
stationary and incompressible formulation of the Navier–Stokes equations is presented. The
solver utilizes ILU preconditioning, a priori pivoting and segregation of variables. An unstruc-
tured mesh is split into a number of subdomains (see Figure 1). Earlier work [4] required the
subdomains to be slices of the global domain with unconnected interfaces. A more general
algorithm has been devised to allow arbitrary domain partitioning.

∗Correspondence to: �rnulf Sta�, Faculty of Engineering, Oslo University College, Cort Adelersgate 30, N-0254
Oslo, Norway.

†E-mail: ornulfs@iu.hio.no

Received 27 April 2004
Copyright ? 2005 John Wiley & Sons, Ltd. Revised 15 December 2004



1302 �. STAFF AND S. �. WILLE

Figure 1. Unstructured adaptive mesh for a lid-driven cavity at Reynolds number 800. The
left �gure shows the adaptive structure of a 2D mesh. The right �gure is a corresponding
3D mesh split into 4 subdomains for parallel solution on 4 processors. Synchronization of

interface nodes is done by message passing.

The model problem is the stationary incompressible Navier–Stokes equations on a lid-driven
cavity. A constant velocity with zero y component is speci�ed at the lid. All other boundaries
have no-slip zero velocities imposed.

2. NUMERICAL METHODS

The structure of a �nite element equation matrix is determined by mesh structure and node
numbering. Node numbers are arbitrary, and any node pivot will produce a valid equation
system. The matrix structure for one possible pivot of the nodes of a submesh of Figure 1 is
shown in Figure 2. Nodes internal to the submesh are sorted spatially with regard to the centre
of the submesh. Nodes on interfaces to other submeshes are sorted by the highest numbered
submesh they belong to.
A reasonable ILU �ll-in strategy is for the decomposition to maintain the same structure

as the assembled �nite element matrix [5]. To perform parallel ILU, nodes and their corre-
sponding matrix rows are split in three categories:

1. Internal: Nodes internal to the submesh.
2. Receive: Nodes where the submesh is the highest numbered submesh containing the
node.

3. Transmit: Nodes where some other higher numbered submesh also contains the node.
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Figure 2. The matrix structure for mesh 2 in Figure 1. Each non-zero value in the matrix is marked
with a dot. Nodes internal to the submesh are labelled I, those on receive interfaces are labelled R and
transmit interfaces are labelled T. The submatrices connecting receive and transmit nodes are almost
entirely zero. This allows much of the synchronization between subdomains to happen in parallel.

Internal nodes are independent and are handled in parallel on all processors. Receive nodes
are handled after data has been received from all other submeshes containing the nodes.
Data for transmit nodes is sent when all dependencies to internal and receive nodes have
been resolved. Good parallel performance stems from the fact that the receive and transmit
interfaces are largely independent of one another. Most data can be sent before waiting for
data for the receive nodes.
The parallel preconditioner and the subsequent conjugate gradient solver perform opera-

tions on an implicitly formed matrix of the entire domain. For any given mesh, subdomain
partitioning a�ects only the pivot of this implicit matrix.
The information required to produce a pivot vector and determine all transmit dependencies

are contained locally in each submesh. Parallel performance is a�ected by the number of
interface nodes. However, dependencies are completely resolved and the solver will produce
a valid ILU preconditioner for any subdomain partitioning.
Good performance depends on an approximately equal number of nodes in each submesh.

Because the solver does not impose any restriction on valid partitioning, any dynamic load
balancer can be used [6].

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1301–1306



1304 �. STAFF AND S. �. WILLE

3. EFFICIENCY AND SCALABILITY

The solution for a 3D driven cavity at Reynolds number 800 is shown in Figure 3. The
mesh used is akin to those in Figure 1. They are adaptively re�ned with regard to element
Reynolds number estimates. Re�nement thus occur in the upper corners and along the main
vortex inside the cavity. The 3D cavity in Figure 1 is divided in four subdomains suitable for
parallel computation on four processors. Each subdomain is balanced with its neighbours to
contain a similar number of elements while minimizing the number of interface nodes. This
will tend to produce continuous subdomains with a high ratio of internal nodes to interface
nodes. However, the solver will function for any partitioning of the domain and does not
depend on continuous subdomains.
Computational overhead is a critical component in any parallel solver. Scalability is greatly

a�ected if the parallel iterative solver requires more iterations than its serial counterpart in
order to reach an acceptable solution quality. Figure 4 shows the proposed ILU strategy to
be largely independent of the number of subdomains. Within reasonable ratios between mesh
sizes and number of processors, preconditioner quality is not reduced by parallelization.
Communication overhead is a function of per-message network latency and the number of

interface nodes. Message latency overhead depends on the number of messages sent, which
is fairly constant. The number of interface nodes grows slower than the number of internal
nodes. Because computational load is a function of the total number of nodes, good parallel
performance can be achieved on almost any hardware with a su�ciently large number of
elements.

Figure 3. Velocity streamlines and pressure isobars for a 3D driven cavity at Reynolds number
800. The lid is driven by a velocity with at 35◦ angle to the x-axis. Solving is performed by
an unstructured domain decomposition as illustrated in Figure 1. The streamlines pro�le clearly
show the main vortex inside the cavity. The upper left and upper right corners are regions of low

and high pressure, respectively.
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Figure 4. Required number of iterations to achieve ‖Ax−b‖¡5:0× 10−6. Continuation is performed by
scaling the previous solution when the velocity is increased. Each Reynolds number is calculated with

three adaptive grid re�nements and �ve Newton iterations per re�nement.
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Figure 5. Runtime in seconds for three 3D uniform mesh resolutions as a function of number of
processors. Speedup on 12 processors is 7.1 for the small problem and 8.6 for the large.
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Experiments show that the algorithms are suitable for implementation on non-specialized
parallel hardware. Trials were conducted on a cluster of identical computers running Linux.
Each computer was equipped with 2:8 GHz Intel Pentium IV processor and 1 GB of RAM.
They were connected through a standard 100 mbit switched Ethernet.
The runtimes for 2D meshes with di�erent mesh resolutions are shown in Figure 5.

The measurements were performed on uniform non-adaptive meshes. For an adaptive mesh
over a given problem, the element count is largely a function of velocity and thus Reynolds
number.
The meshes used for measurement in Figure 5 consisted of 49 152 and 393 216 elements.

In comparison, the solution with Reynolds number 800 in Figure 3 consisted of 204 928
elements, using an adaptively re�ned mesh.
The time measurements show an increased reduction in parallel runtime for larger problem

sizes. While the coarsest meshes do not bene�t from more than 4 processors, higher mesh
resolutions scale well up to 12 processors.

4. DISCUSSION

Through a priori node pivoting, serial dependencies between interface nodes can be minimized
in order to allow a solver with largely parallel synchronization of subdomains. All decisions to
construct the pivot are based on locally available information. There is no need for a central
controlling processor.
The parallel solver constructs dependencies for any subdomain partitioning and is therefore

well suited for adaptive mesh generators with parallel re�nement. Mesh generation and load
balancing are not burdened with any additional constraints imposed by the equation solver.
The considered ILU performs �ll-in based on mesh structure. While practical for parallel-

ization, this strategy is not a strict requirement. Dependency calculations could be performed
after an ILU with adaptive �ll-in of the internal nodes. The dependencies would then be
a function of matrix connectivity rather than mesh structure. Thus, any ILU strategy could
theoretically be used with structural limitations imposed only on interface nodes.
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